Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 367: 235-247, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244842

RESUMO

Skin electroporation for drug delivery involves the application of Pulsed Electric Fields (PEFs) on the skin to disrupt its barrier function in a temporary and non-invasive manner, increasing the uptake of drugs. It represents a potential alternative to delivery methods that are invasive (e.g. injections) or limited. We have developed a drug delivery system comprising nanocomposite hydrogels which act as a reservoir for the drug and an electrode for applying electric pulses on the skin. In this study, we employed a multi-scale approach to investigate the drug delivery system on a mouse skin model, through electrical measurements, numerical modeling and fluorescence microscopy. The Electrical properties indicated a highly non-linear skin conductivity behavior and were used to fine-tune the simulations and study skin recovery after electroporation. Simulation of electric field distribution in the skin showed amplitudes in the range of reversible tissue electroporation (400-1200 V/cm), for 300 V PEF. Fluorescence microscopy revealed increased uptake of fluorescent molecules compared to the non-pulsed control. We reported two reversible electroporation domains for our configuration: (1) at 100 V PEF the first local transport regions appear in the extracellular lipids of the stratum corneum, demonstrated by a rapid increase in the skin's conductivity and an increased uptake of lucifer yellow, a small hydrophilic fluorophore and (2) at 300 V PEF, the first permeabilization of nucleated cells occurred, evidenced by the increased fluorescence of propidium iodide, a membrane-impermeable, DNA intercalating agent.


Assuntos
Epiderme , Pele , Animais , Camundongos , Administração Cutânea , Eletroporação/métodos , Condutividade Elétrica
2.
J Mater Chem B ; 11(10): 2036-2062, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36789648

RESUMO

Hydrogels, soft 3D materials of cross-linked hydrophilic polymer chains with a high water content, have found numerous applications in biomedicine because of their similarity to native tissue, biocompatibility and tuneable properties. In general, hydrogels are poor conductors of electric current, due to the insulating nature of commonly-used hydrophilic polymer chains. A number of biomedical applications require or benefit from an increased electrical conductivity. These include hydrogels used as scaffolds for tissue engineering of electroactive cells, as strain-sensitive sensors and as platforms for controlled drug delivery. The incorporation of conductive nanomaterials in hydrogels results in nanocomposite materials which combine electrical conductivity with the soft nature, flexibility and high water content of hydrogels. Here, we review the state of the art of such materials, describing the theories of current conduction in nanocomposite hydrogels, outlining their limitations and highlighting methods for improving their electrical conductivity.


Assuntos
Hidrogéis , Nanocompostos , Condutividade Elétrica , Engenharia Tecidual/métodos , Polímeros
3.
Sci Technol Adv Mater ; 23(1): 735-751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386551

RESUMO

A wide band gap semiconductor power module can operate at higher voltages as compared with its traditional silicon counterpart. However, its insulating system undergoes stronger electric fields at the triple point between the ceramic substrate, the metallic tracks and the encapsulating polymer, which can dramatically reduce its lifespan. Here we report an original concept based on the local modification of the substrate properties to mitigate such electrical stress. Numerical simulations revealed its potential to reduce this constraint by up to 50%. This concept was realized by developing, through a practical approach, a novel substrate made of an AlN-based ceramic (material A) integrating a nanocomposite volume endowed with controlled properties and geometry. This approach implies first the spark plasma sintering of the AlN powder with additives (Y2O3, CaF2) to endow the material A with a very low electrical conductivity (σ) and high thermal conductivity (k). Graphene nanoplatelets (GNP) were incorporated within this material to fabricate a nanocomposite with a controlled σ anisotropy that otherwise reached a striking ratio of 106 at 20°C for 1.25 vol% GNP. Our approach secondly aimed at developing an effective process allowing to integrate this nanocomposite into the material A with a very high degree of reproducibility. It finally consisted in establishing the electrical contacts on the achieved substrate and encapsulating it for breakdown testing. The novel substrate enabled a mitigation of the electrical constraint by diminishing its intensity and shifting it from the triple point to a less constrained area. It already brought an improvement in breakdown voltage (VB) by 15% as compared to the traditional substrate, and revealed the potential for achieving higher VB as well. This work lays the foundation for the development of novel multifunctional ceramic-matrix composite substrates sought for power electronics as well as for other potential applications.

4.
Sensors (Basel) ; 22(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35062444

RESUMO

The electrical and electromechanical responses of ~200 µm thick extruded nanocomposite films comprising of 4 wt.% and 5 wt.% multiwall carbon nanotubes mixed with polypropylene are investigated under an alternating current (AC) and compared to their direct current (DC) response. The AC electrical response to frequency (f) and strain (piezoimpedance) is characterized using two configurations, namely one that promotes resistive dominance (resistive configuration) and the other that promotes the permittivity/capacitive contribution (dielectric configuration). For the resistive configuration, the frequency response indicated a resistive-capacitive (RC) behavior (negative phase angle, θ), with a significant contribution of capacitance for frequencies of 104 Hz and above, depending on the nanotube content. The piezoimpedance characterization in the resistive configuration yielded an increasing impedance modulus (|Z|) and an increasing (negative) value of θ as the strain increased. The piezoimpedance sensitivity at f = 10 kHz was ~30% higher than the corresponding DC piezoresistive sensitivity, yielding a sensitivity factor of 9.9 for |Z| and a higher sensitivity factor (~12.7) for θ. The dielectric configuration enhanced the permittivity contribution to impedance, but it was the least sensitive to strain.

5.
Polymers (Basel) ; 13(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922186

RESUMO

Applications of polymeric materials in electrical engineering increasingly require improvements in operating voltages, performance, reliability, and size reduction. However, the resulting increase on the electric field in electrical systems can prevent achieving these goals. Polymer composites, functionalized with conductive or semiconductive particles, can allow us to reduce the electric field, thus grading the field within the system. In this paper, a comprehensive review of field-grading materials, their properties, and recent developments and applications is provided to realize high-performance high-voltage engineering applications.

6.
Materials (Basel) ; 11(10)2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287768

RESUMO

Multilayer ceramic capacitors (MLCC) are essential components for determining the reliability of electronic components in terms of time to failure. It is known that the reliability of MLCCs depends on their composition, processing, and operating conditions. In this present work, we analyzed the lifetime of three similar X7R type MLCCs based on BaTiO3 by conducting High Accelerated Life Tests (HALT) at temperatures up to 200 °C at 400 V and 600 V. The results were adjusted to an Arrhenius equation, which is a function of the activation energy (Ea) and a voltage stress exponent (n), in order to predict their time to failure. The values of Ea are in the range of 1⁻1.45 eV, which has been reported for the thermal failure and dielectric wear out of BaTiO3-based dielectric capacitors. The stress voltage exponent value was in the range of 4⁻5. Although the Ea can be associated with a failure mechanism, n only gives an indication of the effect of voltage in the tests. It was possible to associate those values with each type of tested MLCC so that their expected life could be estimated in the range of 400⁻600 V.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...